Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Korean Journal of Anesthesiology ; : 552-557, 2012.
Article in English | WPRIM | ID: wpr-130227

ABSTRACT

BACKGROUND: The microRNA (miRNA) pathway has emerged as one of the biologic pathways implicated in stem cell regulation. miRNA is a noncoding, single-stranded RNA consisting of 20-25 nucleotides that inhibits the protein production at the step of translation. The molecular effects of lidocaine and procaine on adipose stem cells were investigated by examining RNA expression array. METHODS: Adipose stem cells were isolated from a prior abdominal liposuction procedure. The human adipose stem cells were cultured and then added to a mixture of 1 ml of culture medium plus 1 ml of 2% lidocaine or 2% procaine for the duration of 30 minutes. The expression levels of miRNAs were estimated by using peptide nucleic acid (PNA)-miRNA array analysis throughout the denaturation and hybridization processes after the isolation of miRNA. The miRNAs detected by microarray that either decreased by half fold or increased by 1.5 fold from the control level were interpreted as significant. RESULTS: According to microarray analysis there were 61 miRNAs in total, and no miRNA had decreased expression levels. The stem cells treatment with lidocaine showed 4 alteration of expression with miR-9a* (1.53 fold), miR-29a (1.64 fold), miR-296-5p (1.64 fold) and miR-373 (1.94 fold). The stem cells treated with procaine showed 32 miRNAs that were significantly up-regulated with a range of 1.5 to 2.06 fold. They were stem cell differentiation-related miRNAs, apoptosis and cell cycle-associated miRNAs, immunity-associated miRNAs and hormonal response-related miRNAs. CONCLUSIONS: Lidocaine and procaine affect the miRNA expression on adipose stem cells and the effect of procaine is more marked than that of lidocaine.


Subject(s)
Adult , Humans , Adult Stem Cells , Apoptosis , Chimera , Lidocaine , Lipectomy , Microarray Analysis , MicroRNAs , Nucleotides , Procaine , RNA , Stem Cells
2.
Korean Journal of Anesthesiology ; : 552-557, 2012.
Article in English | WPRIM | ID: wpr-130214

ABSTRACT

BACKGROUND: The microRNA (miRNA) pathway has emerged as one of the biologic pathways implicated in stem cell regulation. miRNA is a noncoding, single-stranded RNA consisting of 20-25 nucleotides that inhibits the protein production at the step of translation. The molecular effects of lidocaine and procaine on adipose stem cells were investigated by examining RNA expression array. METHODS: Adipose stem cells were isolated from a prior abdominal liposuction procedure. The human adipose stem cells were cultured and then added to a mixture of 1 ml of culture medium plus 1 ml of 2% lidocaine or 2% procaine for the duration of 30 minutes. The expression levels of miRNAs were estimated by using peptide nucleic acid (PNA)-miRNA array analysis throughout the denaturation and hybridization processes after the isolation of miRNA. The miRNAs detected by microarray that either decreased by half fold or increased by 1.5 fold from the control level were interpreted as significant. RESULTS: According to microarray analysis there were 61 miRNAs in total, and no miRNA had decreased expression levels. The stem cells treatment with lidocaine showed 4 alteration of expression with miR-9a* (1.53 fold), miR-29a (1.64 fold), miR-296-5p (1.64 fold) and miR-373 (1.94 fold). The stem cells treated with procaine showed 32 miRNAs that were significantly up-regulated with a range of 1.5 to 2.06 fold. They were stem cell differentiation-related miRNAs, apoptosis and cell cycle-associated miRNAs, immunity-associated miRNAs and hormonal response-related miRNAs. CONCLUSIONS: Lidocaine and procaine affect the miRNA expression on adipose stem cells and the effect of procaine is more marked than that of lidocaine.


Subject(s)
Adult , Humans , Adult Stem Cells , Apoptosis , Chimera , Lidocaine , Lipectomy , Microarray Analysis , MicroRNAs , Nucleotides , Procaine , RNA , Stem Cells
3.
Korean Journal of Anesthesiology ; : 508-513, 2010.
Article in English | WPRIM | ID: wpr-17315

ABSTRACT

BACKGROUND: It was well-known that smoking affects the cardiovascular system, and remifentanil can suppress the sympathetic stimulations induced by tracheal intubation. The purpose of this study was to investigate whether there was any difference in the hemodynamic changes induced by tracheal intubation with using remifentanil between smokers and nonsmokers. METHODS: Eighty patients were enrolled: male smokers (MS), male nonsmokers (MN), female smokers (FS) and female nonsmokers (FN). Anesthesia was induced with diluted remifentanil (20 microgram/ml) at a rate of 10 microgram/kg/hr using an infusion pump, and 2 min later, midazolam 0.05 mg/kg and propofol 0.8 mg/kg were injected for achieving unconsciousness. Rocuronium 1 mg/kg was used for muscle relaxation, and tracheal intubation was performed 2 min after rocuronium injection. After tracheal intubation, the remifentanil was decreased to 2 microgram/kg/hr. The mean arterial pressure (MAP) and heart rate (HR) were checked before induction, on unconsciousness, just before intubation, just after intubation and 1, 2 and 3 minutes after intubation, and these values were compared between the groups. RESULTS: In men, the MAP and HR just after intubation and at 1, 2 and 3 minutes after intubation in Group MS were significantly higher than those of Group MN (P < 0.05). For the women, the HR in both groups (the FS and FN groups) were increased just after intubation and 1, 2 and 3 minutes after intubation compared with that at the baseline, respectively, but there was no difference between the two groups. CONCLUSIONS: There was a difference of the hemodynamic changes induced by tracheal intubation with using remifentanil between the male smokers and nonsmokers, but not in women.


Subject(s)
Female , Humans , Male , Androstanols , Anesthesia , Arterial Pressure , Cardiovascular System , Heart Rate , Hemodynamics , Infusion Pumps , Intubation , Midazolam , Muscle Relaxation , Piperidines , Propofol , Smoke , Smoking , Unconsciousness
SELECTION OF CITATIONS
SEARCH DETAIL